
City University of New York (CUNY)
CUNY Academic Works

Computer Science Technical Reports Graduate Center

2005

TR-2005006: Integration of Laser Vibrometry with
Infrared Video for Multimedia Surveillance Display
Zhigang Zhu

Weihong Li

Follow this and additional works at: http://academicworks.cuny.edu/gc_cs_tr

Part of the Computer Sciences Commons

This Technical Report is brought to you by CUNY Academic Works. It has been accepted for inclusion in Computer Science Technical Reports by an
authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@gc.cuny.edu.

Recommended Citation
Zhu, Zhigang and Li, Weihong, "TR-2005006: Integration of Laser Vibrometry with Infrared Video for Multimedia Surveillance
Display" (2005). CUNY Academic Works.
http://academicworks.cuny.edu/gc_cs_tr/261

http://academicworks.cuny.edu?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr/261?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AcademicWorks@gc.cuny.edu%3E


0 

 AFRL/HECB Grant Final Performance Report  

 
 

Integration of Laser Vibrometry  
with Infrared Video  
for Multimedia Surveillance Display 
 
Zhigang Zhu (Principal Investigator) 
Weihong Li 
Computer Science Department 
City College of New York /CUNY 
 

 

 

Prepared for 

Air Force Research Laboratory 
under Award No F33615-03-1-6383 

 

December 2004 
 

 

 

The City College of New York 
  DEPARTMENT OF COMPUTER SCIENCE    CONVENT AVE & 138TH ST 

  SCHOOL OF ENGINEERING                                 NEW YORK, NY 10031 

 

 

 

Approved for public release; distribution is unlimited



 

1

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
  December 2004 

2. REPORT TYPE 
Final Performance Report 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 F33615-03-1-6383 

Integration of Laser Vibrometer and Infrared Video for 
Multimedia Surveillance Display 

5b. GRANT NUMBER 
  

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

  Zhigang Zhu, Weihong Li 5e. TASK NUMBER 
 

 5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
Computer Science Department    
City College of New York  
 
 

 
Convent Avenue and 138th Street
New York, NY 10031 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
JONATHAN I. LEE, Lt., USAF  AFRL/HECB 
BAO/BATMAN-TAD2 Operator Interfaces 2610 Seventh Street  

Air Force Research Laboratory Wright-Patterson AFB, OH 45433-7901 11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
Laser Doppler vibrometer (LDV) is a non-contact, remote and high resolution voice detector. Vibration of the objects caused by voice 
reflects the voice itself. After the enhancement with Gaussian bandpass filtering and the adaptive volume scaling, the LDV voice signals 
were mostly intelligible from targets without retro-reflective finishes at short or medium distances (< 100m). By using retro-reflective 
tapes, the distance could be as far as 300 meters. Infrared (IR) imaging for target selection and localization was also discussed for LDV 
listening. A system has been set up with three types of sensors (IR cameras, PTZ color cameras and LDVs) for performing integration of 
multimedia sensors in human signature detection. The basic idea is to provide an advanced augmented interface in order to give users the 
best cognitive understanding of the environment, the sensors and the events.  
 
However, without retro-reflective tape treatment, the LDV voice signals were still very noisy from targets at medium and large distances. 
Therefore, with the state-of-the-art sensor technology, more advanced signal enhancement techniques are needed. Further sensor 
improvement is also necessary. In addition, automatic targeting and intelligent refocusing is a technical issue that deserves research 
attention for long range LDV listening. 
15. SUBJECT TERMS 
laser vibrometry, clandestine listening, multimedia integration, audio signal enhancement, 
infrared video surveillance 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Zhigang Zhu 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

SAR 38 
 

19b. TELEPHONE NUMBER (include area 
code) 
(212) 650-8799 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 

 



2 

 

Table of Contents 
 

Acknowledgements 3 

 

1. Introduction 4 

2. Overview: A Multimedia Integration Approach 5 

3.  Multimedia Sensors 7 

3.1 The LDV sensor 7 

3.2. Infrared camera 9 

3.3. PTZ camera 10 

4. Laser Doppler Vibrometer: Principle and Applications 11 

5. LDV Audio Signal Enhancement 14 

5.1. The Gaussian bandpass filter 15 

5.2. Volume selection and adaptation 19 

6.  Experiment Designs and Analysis 21 

6.1. Real data collections 21 

6.2.1. Experiments on long range LDV listening 22 

6.2.2. Experiments on listening through walls/doors/windows 23 

6.2.3. Experiments on talking inside cars 24 

6.2.4. Experiments on types of surfaces 26 

6.2.5. Experiments on surface directions 27 

6.2. LDV performance analysis 28 

7. Discussions on Sensor Improvements and System Integration 32 

7.1. Further research issues in LDV acoustic detection 33 

7.2. Multimodal integration and intelligent targeting and focusing 36 

8. Conclusions 36 

9. References 37 

 



 3

 

Acknowledgements 
 

We are grateful to Lt. Jonathan Lee and Mr. Robert Lee at the Air Force Research Laboratory 
(AFRL) for their guidance and valuable discussions on many technical issues on laser Doppler 
vibrometers during the course of this work. Prof. George Wolberg at the City College has been 
involved in a collaboration effort with the PI on the multimodal sensor integration for human 
signature detection, and has also provided many insightful suggestions and discussions. Prof. 
Ning Xiang at Rensselaer Polytechnic Institute (RPI) has provided his consulting services on 
laser Doppler vibrometers that have led us to a better understanding of this new type of sensor. 
Prof. Esther Levin, with her expertise in speech technology, has provided valuable discussions 
on speech signal processing. We also thank Mr. Robert T. Hill at the City College for 
proofreading the document and for providing some valuable comments and suggestions. 

This material is based on research sponsored by the Air Force Research Laboratory under 
agreement number F33615-03-1-6383. The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. 
However, the views and conclusions contained herein are those of the authors and should not be 
interpreted as necessarily representing the official policies or endorsements, either expressed or 
implied, of the Air Force Research Laboratory or the U.S. Government. 

 



 4

1. Introduction 
 

Recent improvements in laser vibrometry [1-6] and day/night IR imaging technology [15] have 
created the opportunity to create a long-range multimedia surveillance system.  Such a system 
would have day and night operation.  The IR video system would provide the video surveillance 
while allowing the operator to select the best target for picking up audio detectable by the laser 
vibrometer. This multimedia capability would greatly improve security force performance 
through clandestine listening of targets that are probing or penetrating a perimeter defense. The 
targets may be aware that they are observed but most likely would not infer that they could be 
heard. This system could also provide the feeds for advanced face and voice recognition systems. 

Laser Doppler vibrometers (LDV) such as those manufactured by Polytec™ [2] and B&K 
Ometron [3] can effectively detect vibration within two hundred meters with a sensitivity on the 
order of 1µm/s. These instruments are designed for use in laboratories (0-5 m working distance) 
and field work (5-200 m) [2-7]. For example, these instruments have been used to measure the 
vibrations of civil structures like high-rise buildings, bridges, towers, etc. at distances of up to 
200m. However, for distances above 200 meters, it will be necessary to treat the target surface 
with retro-reflective tape or paint to ensure sufficient retro-reflectivity. At distances beyond 
200m and under field conditions, the outgoing and reflected beam will pass through medium 
with different temperatures and thus different reflective coefficients. Another difficulty is that 
such an instrument uses a front lens to focus the laser beam on the target surface in order to 
minimize the size of the measuring point. At 200m the spot size is 12mm and very weak. At 
1,000m the spot diameter would be 63mm and extremely weak. At a distance above 200 m, the 
speckle pattern of the laser beam induces noise and signal dropout will be substantial [8]. 
Finally, the visible laser beam is good for a human to select a target, but it is not desirable for a 
clandestine surveillance application. 

The overall goal of this project is on an advanced multimedia interface for human effectiveness 
in using the state-of-the-art sensing technologies for perimeter surveillance. We believe that in 
the foreseeable future of these technologies, human involvement in all the three stages – sensors, 
alarm, and response - is still vital for a successful surveillance system.  Meanwhile, we fully 
realize that the capabilities of sensors - infrared (IR) cameras, visible (EO) cameras, and the laser 
vibrometers (LDVs) in our study - are critical to surveillance tasks. IR and EO cameras have 
been widely used in human and vehicle detection in traffic and surveillance applications. 
However, literature on remote acoustic detection using LDVs is rare. Therefore, in this one year 
project we have mainly focused on the experimental study of LDV-based voice detection, and 
this will be the main focus of this report.  We have also set up a system with all  three types of 
sensors for performing integration of multimedia sensors in human signature detection. This 
report also briefly discusses how we can use IR/EO imaging for target selection and localization 
for LDV listening. 

This report is organized as follows. First, we give an overall picture of our technical approach:   
the human-centered technology paradigm for the integration of laser Doppler vibrometry and IR 
imaging for multimedia surveillance display. The basic idea is to provide an advanced 
virtualized-reality based interface of the site (e.g., air base) to give the operator the best cognitive 
understanding of the environment, the sensors, and the events. One of the important issues is 
how to use IR imaging to help the laser Doppler vibrometer to select the appropriate targets.  
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Then, we discuss various aspects of LDVs for voice detection: basic principles and problems, 
signal enhancement algorithms, and experimental designs. We focus on the study of the 
humancentered technology for LDV sensor information enhancement and clandestine listening. 
We investigate the performance of the laser Doppler vibrometer on two types of targets:  fixed 
facilities in the environment that vibrate with humans and /or vehicles nearby, and the human 
subjects themselves. We have designed a graphic human computer interface for signal analysis, 
signal filtering, and signal synthesis. The graphic interface helps a user to understand the relation 
between the signals and noises in term of magnitudes and frequencies, and by signal synthesis 
(i.e. speech synthesis from the filtered laser Doppler vibrometry signals), the user can adaptively 
pick up the useful signals.  

Speech enhancement algorithms are applied to improve the performance of recognizing a noisy 
voice detected by the LDV system. The detected speech signal may be corrupted by more than 
one noise source, such as laser photon noises, target movements, and background acoustic noises 
(wind, engine sound, etc.). Many speech enhancement algorithms have been proposed [9-12], but 
they have been mainly used for improving the performance of speech communication systems in 
noisy environments. Acoustic signals captured by laser vibrometers need special treatment.  

The laser Doppler vibrometer strongly depends the reflectance properties of the surfaces of the 
target. Important issues like target surface properties, size and shape, distance from the sensors, 
sensor installation, and calibration strategy are studied through several sets of indoor and outdoor 
experiments. By doing this study, we have gained a better understanding of the LDV 
performance, which could guide us for improving the LDV sensors. We provide a brief 
discussion on some future work in LDV sensor improvements and multimedia human signature 
detections.   

We envision that the integration of the IR imaging and laser Doppler vibrometry will provide a 
multimedia display to the user with spatial coherent environment, enhanced video and audio 
presentation, and rapid target localization capabilities via the technologies of augmented reality, 
video-audio registration, information filtering / enhancement, and automatic target detection / 
listening.  Ultimately, this goal could be achieved for kilometer long-range surveillance. In this 
one-year project, this research provides a feasibility study of multimedia integration and 
visualization solutions with the state-of-the-art sensors. 

 

2. Overview: A Multimedia Integration Approach 
There are three main components in our approach of multimedia human signature detection 
(Figure 1, Figure 2): the IR/EO imaging video surveillance component, the LDV audio 
surveillance component, and the human-computer interaction components. Both the IR/EO and 
LDV sensing components can support day and night operation even though it will be better to 
use a standard EO camera (coupled with the IR camera) to perform the surveillance task during 
daytime. The overall approach is the integration of the IR/EO imaging and LDV audio detection 
for a long-range surveillance task. The integration has the following three steps. 

Step 1. Target detection, tracking, and selection via the IR/EO imaging module. The targets of 
interest could be humans or vehicles (driven by humans). This will be performed by motion 
detection and human/ vehicle segmentation methods. 
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Figure 1. System components of a multimodal human signature detection system. 

  

Step 2. Audio targeting and detection by the LDV audio module. The audio signals could be 
human voices or vehicle engine sounds. We mainly consider the human voice detection. The 
main issue is to select the LDV targeting points provided by the IR/EO imaging module to detect 
the vibration caused by human voices. 

Step3. Face/vehicle shot of best view capture by the feedback from audio detection. By using the 
audio feedback, the IR/EO imaging module can verify the existence of humans and capture the 
best face shots for face recognition. Together with the voice recognition module, the surveillance 
system could further perform human identification and event understanding. 

 

An important concept is to design a human-computer interface for the human-centered 
multimedia surveillance. Human involvement in all the three stages – sensors, alarm, and 
response –  is vital for a successful surveillance system. Figure 2 shows the human-computer 
interaction (HCI) synopsis for human-in-the-loop surveillance operation with augmented reality 
(AR) visualization, target selection, signal extraction and enhancement, and human 
identification.  
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Figure 2. System Diagram. The Human-Computer Interaction (HCI) is important for sensor 
modeling/registration, video/audio detection, and recognition. 

 

3.  Multimedia Sensors  
For enabling the study of the multimedia sensor integration for human signature detection, we 
have acquired the following sensors: a Laser Doppler Vibrometer (LDV) OFV-505 from Polytec, 
a ThermoVision A40M infrared camera from FLIR, and a Canon color/near IR pan/tilt/zoom 
(PTZ) camera. The FLIR ThermoVision A40M IR camera and the Canon  PTZ camera VC-C50i 
were purchased under the funding this project, and the Polytec LDV was purchased with a 
matching funding through a CUNY Equipment Competition Award. We will briefly list the main 
characteristics of each of them in the following paragraphs.  

3.1 The LDV sensor 
The Laser Doppler Vibrometer from Polytec [2] includes a controller OFV-5000 with a digital 
velocity decode card VD-6 and a sensor head OFV-505 (Figure 3). We also acquired a telescope 
VIB-A-P05 for accurate targeting at large distances. The sensor head uses a particular helium 
neon red laser with wavelength of 633 nm and is equipped with a super long-range lens. It sends 
the interferometry signals to the controller, which is connected to the computer via an RS-232 
port. The controller box includes a velocity decoder VD-06, which processes signals received 
from the sensor head. There are a number of output signal formats from the controller, including 
an S/P-DIF output and digital and analogue velocity signal outputs. 
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Figure 3 The Polytec™ LDV  (a) Controller OFV-5000 (b) Sensor head OFV-505 (c) Telescope 

VIB-A-P05 

 

To receive and to process the signal from the controller, we use a low-cost Audigy2 ZS audio 
card with built-in S/P-DIF I/O interface on the console of the computer. This audio card can 
receive the digital signals from the controller and play them back through the audio outputs on 
the console machine. It can also save the received signals as audio files, e.g., in MP3 or WAV 
format. The main features of the LDV sensor and the accessories are listed as follows:  

 

 Sensor Head OFV-505 

 HeNe (Helium-Neon) laser, λ=632.8 nm, power <1 mW 

 OFV-SLR lens (f=30mm) 1.8 m – 200+ m, automatic focus 

  “Any” surface  

 Controller OFV-5000 

 Low pass (5, 20,100 kHz), high pass (100Hz), tracking filters  

 RS-232 interface for computer control 
 Velocity Decoder VD-06 
 Ranges: 1, 2, 10 and 50 mm/s/V 

 Resolution 0.02 µm/s under 1mm/s/V range (2mv/20V) 

 350 kHz bandwidth analog output  

 24 bit, 96 kHz max. digital output on S/P-DIF interface  
 Telescope VIB-A-P05 
 +/-1° vertical tilt and +/-1.5° horizontal tilt  

 HeNe interference filter gives improved visibility  
 

We also developed a software system, called LDVProject (LDVProject.jar), to configure the 
controller and process the received LDV digital signals for audio play (Figure 4). This system 
communicates with the controller via the RS-232 interface by sending commands to the 
controller to change the device parameters and to monitor the status of the device. This system 
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also has integrated some LDV signal processing and enhancement components, which will be 
described in Chapter 4. 

 

 
 

Figure 4. LDV control interface 

3.2. Infrared camera 
The FLIR ThermoVision A40M IR camera has the following features that make it suitable for 
human and vehicle detection: 

 Temp Range of -20° to 500°C, accuracy (% of reading) 
± 2°C or ± 2% 

 320 x 240 Focal Plane Array with Uncooled 
Microbolometer Detector, spectral range 7.5 to 13 µm 

 24° FOV Lens, spatial resolution 1.3 mrad and with built-
in focus motor 

 Firewire Output - IEEE-1394 8/16-bit monochrome & 8-
bit color 

 Video output  - RS170 EIA/NTSC or CCIR/PAL composite video for monitoring on a TV 
screen 

 Keyboard Interface for easy on-site control of the camera 

 ThermoVision Systems Developers Kit (C++) for software development 
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Figure 5(1). A person sitting in a dark room can be clearly seen in the IR image, and the 

temperature can be accurately measured. The reading of the temperature at the cross (Sp1) on 
the face is 33.1oC. 

 
Figure 5(2). Two IR images before and after a person standing at about 200 feet. The reading of 

the temperature at the cross (Sp1) changes from 11oC to 27 oC. The corresponding color 
images with the person in the scene are shown in Figure 6. 

 

Figure 5(1) shows an example where a person sitting in a dark room can be clearly detected by 
the FILR ThermoVision far-infrared camera. Furthermore, the accurate temperature 
measurements also provide important information for discriminating human bodies from other 
hot/warm objects. After the successful detection of humans, objects, such as the doors or walls in 
this example, can be searched in the environment whose vibration with audio waves could reveal 
what the persons might be speaking.  Note that the FILR ThermoVision IR camera is a far-
infrared thermal camera. It does not need to have active IR illumination, and it is suitable for 
detecting humans and vehicles at a distance (Figure 5(2)).  

3.3. PTZ camera 
The state-of-the-art, computer controllable pan/tilt/zoom (PTZ) camera is also ideal for human 
and other target detection at a large distance. The Canon PTZ camera we acquired has the 
following properties:  

 26X optical zoom lens & 12X digital zoom  

 1/4" 340,000 pixel CCD 
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 Pan: +/-100º, Tilt: +90/-30º 

 Minimum Subject Illumination 1 Lux  

     (1/30 second shutter speed) 

 Motorized infrared (IR) cut filter on/off 

 Built-in IR light (effective up to 9 feet).  

 BNC video output 

 RS-232 computer control interface 

 Compact and lightweight at only 14.3 oz 

Figure 6 shows two images of the same scene with two different camera zoom factors. The built-
in IR light will not work for long distances. However, since the camera can sense near-IR waves, 
a LDV with near IR laser can be seen by this kind of camera for IR laser based LDV targeting.  

 

  
 

Figure 6. Two images of a person at a distance of about 200 feet, captured by changing the 
zoom factors of the PTZ camera.  

 

4. Laser Doppler Vibrometer: Principle and Applications 
 

Laser Doppler vibrometers (LDVs) work according to the principles of laser interferometry. 
Measurements are made at the point where the laser beam strikes the structure under vibration. In 
the Heterodyning interferometer (Figure 7), a coherent laser beam is divided into object and 
reference beams by a beam splitter BS1. The object beam strikes a point on the moving 
(vibrating) object and light reflected from that point travels back to beam splitter BS2 and mixes 
(interferes) with the reference beam at beam splitter BS3. If the object is moving (vibrating), this 
mixing process produces an intensity fluctuation in the light.  Whenever the object has moved by 
half the wavelength, λ/2, which is 0.3169 µm (or 12.46 micro inches) in the case of HeNe laser, 
the intensity has gone through a complete dark-bright-dark cycle. A detector converts this signal 
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to a voltage fluctuation. The Doppler frequency fD of this sinusoidal cycle is proportional to the 
velocity v of the object according to the formula 

 λ/2 vfD ⋅=  (1) 

Instead of detecting the Doppler frequency, the velocity is directly obtained by a digital 
quadrature demodulation method [1, 2]. The Bragg cell, which is an acousto-optic modulator to 
shift the light frequency by 40 MHz, is used for identifying the sign of the velocity. 

 

 
Figure 7 .The modules of the Laser Doppler Vibrometer (LDV) 

 
Most objects vibrate while wave energy (including voice waves) is applied on them. Though the 
vibration caused by the voice energy is very small compared with other vibration, this tiny 
vibration can be detected by the LDV. Voice frequency f ranges from about 300 Hz to 3000Hz. 
Velocity demodulation is better for detecting vibration with higher frequencies because of the 
following relation of velocity, frequency, and magnitude of the vibration: 

 v = 2π f m   (2) 

Note that the velocity v will be large with a large frequency f, even under a small magnitude m. 
The Polytec LDV sensor OFV-505 and the controller OFV-5000 can be configured to detect 
vibrations under several different velocity ranges:  1 mm/s/V, 2 mm/s/V, 10 mm/s/V, and 50 
mm/s/V, where V stands for velocity. For voice vibration, we usually use the 1mm/s/V velocity 
range. The best resolution is 0.02 µm/s under 1mm/s/V range, according to the manufacture’s 
specification (with retro-tape treatment). Without retro-tape treatment, the LDV still has a 
sensitivity on the order of 1 µm/s. This indicates that the LDV can detect vibration (due to voice 
waves) at a magnitude as low as m = v/ 2π f = 1 /(2*3.14*300) = 0.5 µm.  Note that voice waves 
are in a relative low frequency range. The Polytec OFV-505 LDV sensor that we have is capable 
of detection vibration with a much higher frequency (up to 350K Hz). 

There are two important issues to consider in order to use an LDV to detect the vibration of a 
target caused by human voices. First, the target vibrates with the voices. Second, points on the 
surface of the target where the laser beam hits reflect the laser beam back to the LDV. We call 
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such points LDV targeting points, or simply LDV points. Therefore, the LDV points selected for 
audio detection could be the following three types of targets (Figure 8). 

 

LDV

vehicle

Human 1 

pipe 
wall

Human 2 

Humans 3 

 
Figure 8.  Target selection and multimedia display. The laser Doppler vibrometer (LDV) can 

measure audio signals from tiny vibrations of the LDV points (indicated by the beams and the 
red dots onto the objects in the figure) that couple with the audio sources 

 

 (1) Points on a human body.  For example, the throat of a human will be one of the most 
obvious parts where the vibration with the speech could be detected by the LDV. However, we 
have found that it is very challenging since it is “uncooperative”: (a) it is not easyily targeted, 
especially when the human is moving; (b) it does not have a good reflective surface for the laser 
beam, and therefore a retro-reflective tape has to be used; (c) the vibration of the throat only 
includes the low frequency parts of the voice. For these reasons, our experiments will mainly 
focus on the remaining two types of targets. 

(2) Points on a vehicle with humans within. Human voice signals vibrate the body of a vehicle, 
which could be readily detected by the LDV. Even if the engine is on and the volume of the 
speech is low (e.g., in cases of whispering), we could still extract the human voice by signal 
decomposition since the human voice and engine noise have different frequency ranges.  
However, even if the vehicle is stationary we have found that the body of the vehicle basically 
does not reflect the HeNe laser suitably for our purposes without applying retro-reflective tape. 
With retro-tape, the signal returns with LDV are excellent when the targets (cars) are at various 
distances (10 to 50 meters in our experiments) and also with a large range of incident angles of 
the laser beam. It is even more challenging to detect the voice when the vehicle is moving. 

(3) Points in the environment. For perimeter surveillance, we can use existing facilities or install 
special facilities for human audio signal detection.  Facilities like walls, pillars, lamp posts, large 
bulletin boards, and traffic signs vibrate very well with human voices, particularly during the 
relative silence of night.  Note that a LDV has a sensitivity on the order of 1 µm/s, and can 
therefore pick up very small vibrations. We have found that most objects vibrate with voices, and 
many types of surfaces reflect the LDV laser beam within some distance (about 10 meters). 
Response is even better if we can paint or paste certain points of the facilities with retro-
reflective tapes or paints; operating distances can increase to 300 meters (1000 feet) or more.  
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5. LDV Audio Signal Enhancement 
 

Before we describe our experiment designs and data collection, we will first introduce our 
algorithms for LDV voice signal enhancement since we will need to analyze and present the 
results of the collected data using the designed algorithms.  

For the human voice, the frequency range is about 300 Hz to 3 KHz. However, the frequency 
response range of the LDV is much wider than that. Even if we have used the on-board digital 
filters, we still get signals that include troublesome large, slowly varying components 
corresponding to the slow but significant background vibrations of the targets. The magnitudes 
of the meaningful acoustic signals are relatively small, adding on top of the low frequency 
vibration signals. This prevents the intelligibility of the acoustic signals by human ears. On the 
other hand, the inherent “speckle pattern” problem on a normal “rough” surface and the 
occlusion of the LDV laser beam (by passing-by objects) introduce noises with large and high-
frequency components into the LDV measurements (Figure 9). This creates very high and loud 
noise when we directly listen to the acoustic signal. Therefore, we have applied a Gaussian 
bandpass filter to process the vibration signals captured by the LDV. In addition, the volumes of 
the voice signals may change dramatically with the changes of the vibration magnitudes of the 
target due to the changes of speech loudness (shouting, normal speaking, whispering) and the 
distances of the human speakers to the target. Therefore, we have also designed an adaptive 
volume function to cope with this problem. Figure 9 shows two real examples of these two types 
of problems. 

 

 

(a) “Hello…Hello”  

 

 

(b) “I am whispering…(high frequency noise)… OK … Hello (high frequency noise)”  

Figure 9.  Two real examples of LDV acoustic signals with both low and high frequency noises. 
The audio files can be played by clicking the corresponding speaker icons. (a) “Hello…Hello” on 

top of a low frequency background component from the air conditioning machine. (b)  “I am 
whispering…(high frequency noise)… OK … Hello (high frequency noise)” with both low and 
high frequency noises. The volumes of voice changed from whispering to normal to shouting. 
While the first audio clip is still audible, the second one is almost impossible to hear without 

enhancement. 
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5.1. The Gaussian bandpass filter  
We can produce the Gaussian bandpass transfer function by expressing it as the difference of two 
Gaussians of different widths, as has been widely used in image processing [13], i.e. 
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Figure 10 shows the function. The impulse response of this filter is given by 
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Figure 10. The Gaussian bandpass filter transfer function 

 
Figure 11. The Gaussian bandpass filter impulse response 
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Notice that the broader Gaussian in the frequency domain (Figure 10) creates a narrower 
Gaussian in the time domain (Figure 11), and vice versa. We want to reduce the signal 
magnitude outside the frequency range of human voices, i.e., below s1= 300 Hz and above s2 = 
3K Hz. The high frequency reduction is mainly controlled by the width of the first (the broader) 
Gaussian function in Eq. (3), i.e., α2, and the low frequency reduction is mainly controlled by the 
width of the second Gaussian function, i.e., α1.  Since the Gaussian function drops significantly 
when |si| > 2αi, (i=1, 2), as shown by a pair of ‘*’s and a pair of ‘+’s in Figure 10, respectively, 
we obtain the widths of the two Gaussian functions in the frequency domain as 

 2 ,1   ,(Hz)   2/ == isiiα  (5) 

In practice, we process the waveform directly in the time domain, i.e., by convolving the 
waveform with the impulse response in Eq. (4). This leads to a real-time algorithm for LDV 
voice signal enhancement. For doing this, we need to calculate the variances of the two Gaussian 
functions in the time domain. Combining Eq. (4) and Eq. (5) we have 

2 ,1   , (seconds)  1
== i
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i π

σ  (6) 

For digital signals, we need to determine the size of the convolution kernel. Since the narrower 
Gaussian (with width α1) in the frequency domain creates a broader Gaussian (with width σ1) in 
the time domain, we use σ1 to estimate the appropriate window size of the convolution. Again, 
we truncate the impulse function when we have t > 2σ1. Therefore, the size of the Gaussian 
bandpass filter is calculated as  
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where m is the sampling rate of the digital signal. Typically, we use m = 48 K samples/second 
with the S/P-DIF format.  Therefore, the size of the window will be W1 = 210. The size of the 
convolution kernel is marked by a pair of ‘*’s in Figure 11.  

As noted in [10], most speech enhancement systems improve the quality of the signal (i.e. reduce 
the noise level) at the expense of reducing its intelligibility. Listeners can usually extract more 
information from the noisy signal than from the enhanced signal by carefully listening to that 
signal, since by filtering, some of the useful acoustic signal components are also reduced. We 
first look at the high frequency reduction issue. In some cases, reducing frequency above s2= 3K 
Hz will obviously reduce the level of the high frequency noise, particularly for some very short 
time noises brought in by a passing vehicle or a person in front of the LDV, where very high 
frequency “screaming” noise will be generated (e.g. Figure 9b). Without high frequency 
reduction, listeners experience fatigue over extended listening sessions, a fact that results in 
reduced intelligibility of the noisy signal.  This can be demonstrated by listening to a pair 
corresponding audio clips before and after high-frequency reduction in Figure 15. In some other 
cases, high frequency reduction will make the speech “heavy”, and sometimes bring in some 
other high frequency noise due to the digital processing of the filtering (e.g., truncation of the 
Gaussian window). An example is shown in Figure 14.  
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Now let us look at the low-frequency reduction problem. Different from the common speech 
communication systems, our speech signals are captured by a vibrometer, which in many of the 
cases have significantly low “signal-to-noise-ratio”, i.e. very high magnitudes of the low-
frequency background vibration “noises” due to wind, the engine of a vehicle, or an air 
conditioning machine, and also relatively low magnitudes of the vibration measurements due to 
the inherent qualities of speech (Figure 9).  In some cases, it is not possible for the listener to 
perceive the vibration signals as speech (Figure 9b). However, in some of the cases where the 
reflection of the LDV laser beam is perfect and the low frequency vibration magnitudes are low 
or the voice components are comparable to the background vibration (Figure 9a), the 
intelligibility will be better without low-frequency reduction, and the computation in filtering 
will be much less expensive (as will be shown below). 

 

 
 

Figure 12. LDV voice signal processing interface. 

 

Therefore, in our current implementation, the user has the control over the high-frequency 
reduction and/or the low-frequency reduction by enabling/disabling the low-pass (LP) filter and 
the high-pass (HP) filter, and also by selecting an appropriate frequency range (Figure. 12). We 
are also working on algorithms that can automatically analyze original LDV signals and then 
determine what is the appropriate range of the band-pass filter. In practice, with only one of them 
on we could simplify the computation. Without high-frequency reduction, we have α2 
approaching infinity, and therefore the narrower Gaussian in the time domain narrows down to 
an impulse and the filter has the form shown in Figure 13. In this case, the impulse response 
becomes 
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The result of the processed signal is simply the original signal subtracted by the result of the 
Gaussian low-pass filter, with variance σ1. However, the window size in convolution is still W1 
in Eq. (6), and therefore there is no significant benefit in terms of computational cost.  

 

 
Figure 13. The Gaussian low-stop filter 

 

On the other hand, without low-frequency reduction the band-pass filter becomes a Gaussian 
low-pass (LP) filter with variance σ2.  In this case the window size in convolution becomes  
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which is much narrower and more computationally efficient. For example, when m = 48 K 
samples/second and s2 = 3K Hz, we have W2 = 21. The size of the window is marked by a pair of 
‘+’s in Figure 11. 

 

A real example of Gaussian bandpass filtering is shown in Figure 14, with different 
combinations of the two filters (low-reduction and high-reduction). The corresponding audio 
clips can be played by following the links in the sub-captions.  
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    (a) Original signal ( )                                   (b) Low-reduction signal via HP filter ( ) 

    

   (c) High-reduction signal via LP filter ( )           (d) Band-pass signal ( ) 

Figure 14. The waveform and the corresponding spectrograms of (a) Original signal (no filter) 
and (b) Gaussian high-pass (i.e. low-reduction) filter and (c) Gaussian low-pass (i.e. high-

reduction) filter and (d) Gaussian band-pass filter. In each picture, both the waveform and the 
corresponding spectrogram are shown. The spectrograms are generated when the FFT window 
is 1024 samples, or 21.3 ms as the sampling rate is 48 K samples/second. We use s1 = 300 Hz 

for low-reduction and s2 = 3000 Hz for high-reduction in this example.  

 

5.2. Volume selection and adaptation 
The useful original signal obtained from the S/P-DIF output of the controller is a velocity signal. 
When treated as the voice signal, the volume is too small to be heard by human ears. When 
volumes of the voice signals change dramatically within an audio clip, a fixed volume increase 
cannot lead to clearly audible playback. Therefore, we have designed an adaptive volume 
algorithm. For each frame, for example of 1024 samples, the volumes are scaled by the following 
equation: 

 
)...( 2,1

max

nxxxMax
Cv =                    (10) 

where v  is the scale factor of the volume, maxC is the maximum constant value of the volume 
(defined as the largest short integer, i.e., 32767), and nxxx ,...,, 21 are sample data in one speech 
frame (e.g. n = 1024 samples). The scaled sample data stream, nvxvxvx ,...,, 21 , will then be 
played via a speaker so that a suitable level of voice will be heard. 

An alternative way of playing this original signal is simply to multiply the sampled data by a 
constant scale value, e.g., 8 or 16. The advantage of this approach is that we can hear a smoother 
voice than that of the adaptive method. However, the adaptive method will always give a suitable 
volume for any kind of the sampled data stream. Actually, in our software system, both methods 
are implemented, and the user can choose either method on the fly. Figure 15 shows a real 
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example of filtering and scaling. In this example, the best performance of the filtering is obtained 
with only the low-reduction filter (Figure 15e). 

 

(a) Original signal ( ) 

 

(b) ×1 after band-pass filtering ( ) 

 

 

(c) ×8 after band-pass filtering ( ) 

 

 

(d) adaptive scaling after band-pass filtering ( ) 

 

(e) adaptive scaling after low-reduction filtering ( ) 
Figure 15. The waveform of the original signal and the results of fixed scaling and adaptive 

scaling, after using suitable filtering. The short audio clip reads “I am whispering…(noise)… OK 
… Hello (noise)”, which was captured by the LDV OFV-505 from a metal cake-box carried by a 
person at a distance of about 30 meters from the LDV. The surface of the target was treated by 

a piece of retro-tape. The complete audio clip can be found in the following section in the 
distance experiment (Table 1 OA-30M and PA-30M).  
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6.  Experiment Designs and Analysis 
 

In order to use a LDV to detect audio signals from a target, the target needs to meet two 
conditions: reflection to HeNe laser and vibration with voices. Due to the difficulty in detecting 
voice vibration directly from the body of a human speaker, we mainly focus on the use of targets 
in the environments nearby the human speaker. We have found that the vibration of most objects 
in man-made environments caused by waves of voices can be readily detected by the LDV. 
However, the LDV must get signal returns from the laser reflection. The degrees of signal 
returns depend on the following conditions:  

(1) Surface normal vs. laser beam direction; 

(2) Color of the surface with spectral response to 632.8 nm, and  

(3) Roughness of the surfaces – the inherent speckle pattern problem of the laser reflection 
greatly affects the signal to noise ratio (SNR). 

(4) The distance from the sensor head to the target. 

Retro-reflective traffic tapes or paints are a perfect solution to the above reflection problems if 
the targets are “cooperative”. That is to say, if the surfaces of targets can be treated by such tapes 
or paints. The traffic retro-reflective tapes (retro-tapes) are capable of diffuse reflection in that 
they reflect the laser beam back in all directions within a rather large angular range. In the 
following, we will present the experimental results first in real environments and then in 
somewhat controlled environments. 

6.1. Real data collections 
We have performed experiments with the following settings: types of surface, surface directions, 
long-range listening, through-wall listening, and talking inside of cars. In all experiments, the 
LDV velocity range is 1 mm/s/V, and a person’s speech describes the experiment configurations. 
A walkie-talkie is used for remote communication only. With each example, we provide links for 
both the original LDV audio clip and the processed audio clip. The same configurations (band-
pass 300 – 3000 Hz, adaptive volume) are used in processing the data for all the experiments, 
unless indicated. Each audio clip should tell you most of the information for the experiment if it 
is intelligible. Typically, the duration of each clip is about 1 to 3 minutes. Sometimes the signals 
start with a period of noises (no speaking), but all of them should include large portions of 
meaningful voices. Note that we only include original data and the corresponding processed data 
with one fixed configuration of filtering. The original clips have very low volume so you usually 
cannot hear anything meaningful; on the other hand, the processed audio clips are not optimal at 
all for intelligibility. A java program (LDVProject.jar) is included with this report, which can be 
interactively tuned in real-time to get the best intelligibility of the enhanced LDV audio signals. 
It is recommended that the readers run the program, open an audio clip, and change the filtering 
and volume configurations to both view the waveforms and to hear the audio output. 
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Figure 16. Long range LDV listening experiment. A metal cake box (left) is used, with a piece of 

3M traffic retro-tape pasted. The laser spot can be clearly seen. 

6.2.1. Experiments on long range LDV listening 
We tested the long range LDV listening in an open space in Amherst MA, with various distances 
from about 30 to 300 meters (100 ft to 1000 ft). A small metal cake box with retro-tape finish 
was fixed in front of the speaker’s (Prof. Zhu’s) belly. The signal return of the LDV is 
insensitive to the incident angles of the laser beam thanks to the retro-tape finish.  Both normal 
speech volumes and whispers have been successfully detected.  The size of the laser spot 
changed from less than 1 mm to about 5-10 mm when the range changed from 30 to 300 meters. 
The noise levels also increased from 2 mV to 10 mV out of the total range of 20 V analog LDV 
signal. The movements of the body during speaking may cause the laser beam to briefly stray off 
the tape, so large noises could be heard in some places. Table 1 lists the original audio clips and 
the processed audio clips at three different distances. The 260-meter measurement was obtained 
when the target was behind trees/bushes. The changes of volumes of the speaker’s speech could 
be read by listening to the speech. With longer ranges, the laser is more difficult to localize and 
focus, and the signal return becomes weaker.  Therefore, the noise levels become larger. Within 
120 meters, the LDV voice is obviously intelligible; at 260-meter distance, many parts of the 
speech could be identified, even with some difficulty. For all the distances, the signal processing 
plays a significant role in making the speech intelligible. Without processing, the audio signal is 
buried in the low-frequency large-magnitude vibration and high-frequency speckle noises. We 
also want to emphasize that automatic targeting and intelligent refocusing is one of the important 
technical issues that deserves attention for long range LDV listening since it is extremely 
difficult to aim the laser beam at the target and keep it focused. We believe that our multimedia 
integration approach provides a feasible way to achieve this goal.  

Table 1. Long range LDV listening via a cake box 

Range 30 m 120 m 260 m 

Original audio OA-30M  OA-120M  OA-260M  

Processed audio PA-30M  PA-120M  PA-260M  

Intelligibility Good Okay Difficult 

We have also tested the long range LDV listening in a corridor of a building at the City College 
(Figure 6) when Lt. Jonathan Lee at AFRL visited us. Table 2 shows two sets of audio clips 
when Lt. Lee talked to the same cake box nearby him, with and without retro-tape. The vibration 
target (the cake box) was at a distance of about 100 meters (about 340 ft) from the LDV sensor 
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head. With the retro-tape, the speech is clearly intelligible. The significance of this experiment is 
that without the retro-tape, the speech is still intelligible from LDV detection of targets at a 
distance as far as 100 meters. However, it is very noisy. Therefore with the state-of-the-art sensor 
technology, we realize that more advanced signal enhancement techniques need to be developed 
than the simple band-pass filtering and adaptive volume scaling. 

Table 2. Talking to a cake box 100 meters away, with and without retro-tape 

Retro-Tape Yes No 

Original Audio Clip OA_100T  OA_100N  

Processed Audio Clip PA_100T  PA_100N  

Intelligibility Good Fair 

6.2.2. Experiments on listening through walls/doors/windows 
In the second set of experiments, we tested the LDV listening through walls and windows 
(Figures 17 and 18).  In the experiments of LDV listening through walls, we tried several 
different cases: laser pointing to the wall and pointing to the door from a distance of about 30 ft 
away, with and without retro-tapes, vibrated by normal speech and whispering when the speaker 
was walking around in a 15x15 square room, facing towards or away from the targets. The 
original audio clips and the processed ones are listed in Table 3. We have found that the speech 
is quite intelligible via the wall or the door if retro-tape treatment is used, no matter whether the 
speaker talks in a normal voice or a whisper, is facing the target or not, or is close or some 
distance away. Without retro-tape, it is very hard to identify the speech, but we can definitely tell 
the audio clips include a person’s speech. 

 

Laser spot

 
Figure 17. Listening through walls – a person was speaking in a room behind the door (right), 

while the LDV was listening in other room through wall (left) 

Table 3.  Listening through walls/ doors 

Target/speech 

/tape 

 Door/normal 

w/ tape 

Door/whisper 

w/ tape 

Wall/normal 

w/ tape  

Wall/normal 

w/o tape 

Original audio OA-DNT  OA-DWT  OA_WNT  OA_WNN  

Processed audio PA-DNT  PA-DWT  PA_WNT  PA_WNN  

Intelligibility Good  Good  Fair to good Okay to poor 
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In the experiments of LDV listening through windows, we used the window frames as vibration 
targets while a person was speaking outside the house (Figure 18, Table 4). The LDV was inside 
the second floor of the house, several meters away from the window. The person spoke outside 
the house, close to the window. Since the window frames are treated with paints, the reflection is 
good, even though the signal return strength is less than half of that with tape (see the bars in 
back of the LDV sensor Figure 18). We have also tested listening via the window frame when 
the distance between the sensor head and the target was more than 20 meters (or 64 ft) away. The 
LDV voice detection almost has the same performance as this short-range example. 

 
 

No Tape Retro-Tape 

 
Figure 18. Listening through windows – a person was speaking outside the house, close to a 
window, while the LDV was listening inside the room via the window frame. Left: without retro-

tape; right: with retro-tape. The signal return strengths can be seen from the back of the sensor. 

 

Table 4. Listening through windows 

Target/Tape Window frame/ No tape Window frame/ retro-tape 

Original audio OA_WFN  OA_WDT  

Processed audio PA_WFN  PA_WDT  

Intelligibility Good Good 

 

6.2.3. Experiments on talking inside cars 
It is very interesting to consider whether LDV can be used to detect voices from inside a vehicle 
in which intruders of a perimeter may hide, making plans that they feel nobody will know. In 
such cases, the car engine or music may be on and the persons may whisper quietly inside the 
car. We simulated such situations by using several cars and minivans at different distances, and 
we have tried to detect the vibration caused by human speech inside the car via various parts of 
the car, (e.g. front door, back truck, an object inside the car that can be seen through the windows 
of the car). In contrast to our initial assumption, an automobile body does not offer good retro-
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reflection of the LDV laser beam for effective listening. Therefore,  we have treated the targeting 
points of the vehicles with retro-reflective tapes. Table 5 shows some of the collected audio clips 
and the results after voice enhancement. We have the following observations: 

 

15 m, driver side door, with and without retro-tape 

50 m, back truck, without retro-tape 15 m, balloon inside, with tape 
 

Figure 19. Talking inside cars 

 

Table 5. Talking inside cars 

Target Front door Front door Front door Balloon inside 

Retro-tape No Yes No Yes 

Distance 15-20 m  15-20 m 50 m 15-20 m 

Audio 
source 

music/voice 

/engine 

music/voice 

/engine 

music/voice 

/engine 

music/voice 

/engine  

Audio 
volume 

varying  varying  varying  varying 

Orig. Clip OA_15N  OA-15T  OA_50N  OA_15B  

Proc. Clip  PA_15N  PA-15T  PA_50N  PA_15B  

Length  5 min 8 min 3.5 min 3.5 min 

Intelligible 

 

Music fine, 
Voice okay 

Music fine, 

Whisper voice 
good 

Music fair, 

Loud voice okay  

Music fine 

Voice good 

(1). The speech vibration can be detected via any parts of the car (front, side, back, inside).  
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(2). The speech can be distinguished with the engine and/or music on. 

(3). Whisper can also cause car body vibration that is readily detectable by the LDV. 

(4) With retro-tape treatment, the speech is clearly intelligible; without retro-tape, human speech 
can be detected in short ranges, within about 15 – 20 meters, but the SNR will be very low when 
the target is far, e.g. above 50 meters. However, the human voice can always be identified at 
such distances without retro-tape.   

 

6.2.4. Experiments on types of surfaces  
We have tested many different surfaces, both indoors and outdoors, natural and man-made. In 
addition to car bodies, window frames, walls, doors, and the metal cake box we have shown 
above, we have also tested LDV measurements via traffic signs, building pillars, and lamp posts, 
with or without using retro-tapes (Figure 20, Table 6). For example, a black building pillar of a 
building in Figure 20 provides excellent LDV voice listening capability without any retro-tape 
treatment. Traffic signs and a wooden shed seem also to offer good media for carrying the voice 
signal from speakers to the LDV sensors. 

We have found that the LDV could obtain signal returns for voice reading from most objects, 
without retro-tape treatment, if the distance between the sensor head and the target is short: 
within 10 meters for most objects, and within 100 meters for quite a few with good vibration and 
reflection, such as metal cake box with paint finish, traffic signs, etc. With retro-tape, the LDV 
works very well for almost all objects at large distances. The largest distance we have tested is 
more than 300 meters.  

 

Traffic Sign, about 40 m, laser on white paint 
Building Pillar, 10 m, without retro-tape 

Lamp Post, 15 m with retro-tape Shed, 40 m, w/ retro tape Shed 40 m, w/o retro tape 

 
Figure 20. Targets in the environment: building pillar, traffic sign, wooden shed and lamp post. 
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Table 6. Types of targets (w/: with retro-tape; w/o: without retro-tape) 

 

Targets Traffic 
Sign 

Pillar 

w/o tape 

Post w/ 
tape 

Shed w/ 
tape 

Shed w/o 
tape 

Distance 40 m 10 m 15 m 40 m 40 m 

Orig. Audio OA_Sign 
 

OA_Pillar 
 

OA_Post 
 

OA_Shed_T 
 

OA_Shed-N 
 

Proc. Audio PA_Sign 
 

OA_Pillar 
 

PA_Post 
 

PA_Shed_T 
 

OA_Shed-N 
 

Intelligible Fair Good! Good  Good  Fair 

 

 

6.2.5. Experiments on surface directions 
In real applications, it is also important that the LDV can get a signal return when the laser beam 
aims at a target at various directions. In theory, the laser beam could be reflected back from the 
surface of an object by fine adjusting the targeting location in such a way that the surface normal 
on the scale of the wavelength of the laser beam is in the direction of the laser beam. This can be 
achieved by maximum the signal return of the LDV sensor when performing localization and 
focusing. However, in practice this could be very problematic since small physical movements of 
either the sensor or the targets may change the speckle patterns on rough surfaces [1]. This leads 
to very noisy signal, typically as white noise with large magnitudes. A very practical solution is 
retro-reflective tape or paint surface finishing, if allowed. Such retro-tapes (-paints) have the 
properties of reflecting lights from a wide range of directions. Figure 21 and Table 7 show an 
experiment of LDV voice detection through a normal mailbox with retro-tape treatment. The 
voice signals are still intelligible even when the angle between the surface normal and the laser 
beam is as large as 80 degrees. 

 
 

0O 

80O 

 
 

Figure 21. Experiments on surface directions 
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Table 7. LDV listening vs. surface directions 

Angle 0o  45o 80o 

Original Audio OA_0d  OA_45d  OA_80d  

Processed Audio PA_0d  PA_45d  PA_80d  

Intelligibility Good Fair to good  Fair to good 

 

 

6.2. LDV performance analysis 
In order to get a better understanding of the LDV performance, we performed two sets of 
experiments in the lab with controlled conditions, by controlling the voice sources and measuring 
several parameters of the LDV signal returns. 

 

     
Figure 22. Targets: whiteboard, wooden door, concrete wall and a metal cake box 

 

Table 8: LDV signal detection via different targets (Source audio clip / ) 

 Cake Box Wooden Door Concrete Wall Whiteboard 

Retro Tape /  /  /  /  

No tape /  /  /  /  
*A pair of audio clips, original and processed by our software, is listed in each case. 

 

In the first set of experiments, we measured the signal return strengths, vibration magnitudes and 
“signal to noise ratio (SNR)” from various vibration targets, with and without retro-tapes. We 
used a standard computer speaker to play a 6 second audio clip from a presentation by Lt. Lee, 
and the sound vibrated objects in the lab. The objects we measured and compared are a small 
metal cake box, a whiteboard, a wooden door, and a concrete wall. The LDV laser beam was 
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pointed to each target and an auto focus was performed before each measurement. The distance 
of the targets to the LDV was within several meters (about 10 ft). Table 8 lists one set of the 
audio clips with the four types of targets, with and without retro-tape. A pair of audio clips, 
original and processed, is listed for each collection.  

 

The Polytec LDV provides a function to get signal return strengths in the range of 0 to 512. 
Typically, the LDV audio signal will not be intelligible if the strength is lower than 10. The 
signal magnitude is measured as the average signal magnitude of the 6-second audio clip. This 
tells us the vibration magnitudes of the object with the source sound. In order to get a “signal to 
noise ratio (SNR)”, we also obtained LDV measurements under the same conditions, but without 
playing the audio source. This means that the vibration of the targets was caused only by 
background acoustic noises (e.g., air conditioning machine), physical noises (e.g. from 
movements of the sensor head and the targets) and optical/electronic noises. Then, a pseudo SNR 
could be obtained by taking the ratio between the average magnitudes of the LDV signals with 
and without playing the source voice clip. 

 

Table 9 lists the LDV signal return strengths when the LDV audio clips in Table 8 were 
collected. It shows that the signal return strength was full for all four objects we tested when the 
retro-tape was used. This in fact indicates the reflection capability of the retro-tape. Without 
retro-tape, the signal return strengths indicate the reflection properties of the objects. The metal 
cake box (with paints), wooden door (with white paint), and the plastic whiteboard all have 
almost half full signal return. The signal return from the concrete wall (with white paint) is 
almost a quarter of the full strength. Note that all the measurements were performed at a distance 
of about 10 ft. Within that short distance, the voice signals without retro-tape treatment almost 
have the same quality as those with retro-tape treatment. 

 

 
Table 9: Signal return strengths of the objects from 10ft (The full strength is 512) 

 Cake Box Wooden Door Concrete Wall Whiteboard 

Retro-Tape 512 512 512 512 

No tape 200 230 120 250 

 

Table 10 and Table 11 list the average signal magnitudes from the four objects, with and without 
retro-tape, and with and without playing original sound. In each case we performed the 
measurements twice, so two average numbers appear in each table entry. Clearly, the signal 
magnitudes with and without the meaningful sound source are comparable. This indicates that 
the background noises cannot easily be removed. However, if the magnitudes of the background 
noises mainly come from the low frequency part  (below 300 Hz) and the high frequency part  
(above 3000 Hz), the bandpass filter will reduce them. 
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Table 10: Magnitudes of LDV signals (under measurement range 1mm/s/V)  

 Cake Box Wooden Door Concrete Wall Whiteboard 

Retro-Tape 200/149 175/177 78/75 86/75 

No tape 200/202 155/131 105/95 82/113 

 

Table 11: Magnitudes of background noises (under measurement range 1mm/s/V)  

 Cake Box Wooden Door Concrete Wall Whiteboard 

Retro-Tape 174/163 159/186 71/72 72/85 

No tape 190/175 157/146 99/104 64/75 

 

In the second set of experiments, we measured the above properties of the LDV with the cake 
box we have used in the above experiments at various distances in the corridor outside our lab 
(Figure 23). The distances from the lab to one end of the corridor is 100 ft (about 30 m), and to 
the other end of the corridor is 340 ft (about 100 m). In the first sub-set of the distance 
experiments, we had measurements both with and without the retro-tape on the cake box. In the 
second sub-set of the distance experiments, we only obtained measurements with retro-tapes. 

    
Figure 23. Distance experiments in the corridor. The target we measured was the cake box. The 
distances from the sensor to one end of the corridor is about 100 ft (left), and to the other end is 

about 340 ft (right). 

In the first sub-set of experiments, a human speaker read “LDV project experiment”. Table 12 
lists the LDV signal return strengths in several distance configurations. Note that without retro-
tape, the signal return strengths drop dramatically when the distance is above 50 ft, and at 100 ft 
the strength is below 10, which is the threshold for detecting meaningful vibration signals by the 
LDV. Note that this does not mean we cannot obtain meaningful LDV voice signal from a target 
above 100 ft without retro-tape treatment. We have successfully obtained voice signals from the 
cake-box at 300 ft (Table 2). However, as we have noted, a fine and tedious targeting and 
focusing of the laser beam needs to be performed so that the signal return strength is above the 
threshold. As a comparison the signal return strengths with retro-tape are also shown, which do 
not have significant decrease over distances. The average magnitudes with and without the voice 
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source are shown in Table 13 and Table 14. Again, the magnitudes of the signals and the noises 
are comparable. Note that at 100 ft the signal magnitudes are one order larger than other 
measurements, which indicates that the signals captured by the LDV are merely noises and 
therefore meaningless.  For reference, the links of the original audio clips (with voice source 
played) are listed in Table 12, and the links of the high-reduction processed audio clips are listed 
in Table 13. Readers may play and compare the audio clips in Table 13 by clicking on the links, 
or may want to open the audio clips listed in Table 12 by the LDV program LDVProject.jar for 
an interactive audio/visual play. 

 
Table 12: Signal return strengths of various distances (The full strength is 512) 

 25ft 50ft 75ft 100ft 

Retro-Tape 512   512  460   400   

No tape 50-100   14-30   10-30   10   

 

Table 13: Magnitudes of voices at various distances (1mm/s/v) 

 25ft 50ft 75ft 100ft 

Retro-Tape 70/76   92/89  157/172 162/175  

No tape 
74/68  148/87 166/136 

1335/1828 
 

 

Table 14: Magnitudes of noises at various distances (1mm/s/v) 

 25ft 50ft 75ft 100ft 

Retro-Tape 50/57 83/81 160/137 109/141 

No tape 48/46 58/78 121/125 1604/1778 

 

In the second sub-set of distance experiments, we examined the longer range from 50 ft to 340 ft. 
We also roughly measured the LDV laser spot size on the target. In all distances, retro-tape was 
used. Table 15 lists the measurements. The original audio clips are listed in the signal strength 
column and the bandpass filtered and adaptive scaled audio clips are listed in the “voice 
magnitude” column. We have the following observations 

(1) The spot size becomes significantly bigger at distances above 100 ft, and does not 
increase significantly within 350 ft, thanks to the super long lens and the auto focus 
function of the LDV sensor. We should note that even if the measurements of the sizes 
are made roughly by human eyes, the size correlates with the intelligibility of the audio 
signals. For example, since we have better focus of the laser beam at 250 ft than at 200 ft,  
the voice at 250 ft is actually better.  

(2) The signal strength is almost full when the distance is below 100 ft, and is roughly half 
full at the distance from 100 to 350 ft. However, the strength number is much lower 
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(around 50) when the laser beam is not perpendicularly directed to the surface of the 
target and/or not focused well.  

(3) The “SNR” is still about 1:1, but the audio signals are intelligible at distances up to 340 
ft.  

 
Table 15: Results of longer distances experiments (LDV velocity range 1mm/s/v) 

Distance 

Spot  Size 
(mm) 

Signal Strength 
(of 512)  

(w/ orig. audio)  

Noise Mags.  

 

Voice Mags 

(w/ proc. audio) 

50ft 1 458   174 185  

100ft 5-8 227  159 156  

150ft 5-8 248  119 165  

200ft >10   45  866 670  

250ft < 10 290  118 138  

300ft 10 277  180 258  

340ft 10-15   65  172 249  

 

 

7. Discussions on Sensor Improvements and System Integration 
 

Existing laser Doppler vibrometers are designed for use in laboratories (0-5m working distance) 
and field work in relatively medium ranges (5-200m). For distances above 100m it will be 
necessary to treat the target surface with retro-reflective tape or paint to ensure sufficient retro-
reflectivity. Another difficulty is that such an instrument uses a front lens to focus the laser beam 
on the target surface in order to minimize the size of the measuring point.  At 200m the spot size 
is  about 12mm and very weak. At 1,000m the spot diameter would be 63mm and extremely 
weak.  

In term of system integration, one of the interesting research issues is human centered 
technology for sensor and target allocation. The performance of the laser Doppler vibrometer 
strongly depends on the reflectance properties of the surfaces of the targets. The AR multimedia 
interface we have proposed provide a friendly platform to investigate the performance of the 
laser Doppler vibrometers on two types of targets – fixed  facilities (cooperative targets) in the 
environment that vibrate with the human and /or vehicle nearby, and the moving subjects 
(uncooperative targets) themselves. Important issues like automated target detection, localization 
and LDV focusing need to be further studied.  On the other hand, it is extremely important to 
improve the laser Doppler vibrometer’s performance in term of range and signal-noise ratio for 
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long-range surveillance. In the one-year study of this project, we have acquired the best LDV 
commercially available, with super long-range lens and automatic focus. Then we have mainly 
focused on the performance analysis with various possible targets (with and without retro-tape 
treatment), and on signal enhancement algorithms. We realize that sensor improvement is still 
needed for long-range voice detection. 

 

In the following we will provide some initial thoughts along the two lines for enabling long-
range perimeter surveillance.  

 

7.1. Further research issues in LDV acoustic detection 
For the capability to measure vibration at large distances, Scruby & Drain [1] made a very good 
description in the case of ultrasonic measurements. The discussion is also valid for voice 
detection. In application of laser interferometry, we are frequently concerned with surfaces that 
are not optically finished or are irregular on the scale of the wavelength of the light. Light 
scattered from different parts of the surface is not phase-related and is consequently diffused 
over a wide angle. In a given direction of scattering, the resultant may be considered as made up 
of contributions from a large number of independent sources having the same frequency but a 
random phase relation. In a slightly different direction, the relative phases change and the 
resultant is different. This gives rise to an irregular angular distribution of the intensity of the 
scattered light, a “speckle pattern” characteristic of monochromatic illumination. The size of the 
speckle is inversely proportional to the dimensions of the area illuminated.  Assuming that there 
are no problems from atmosphere absorption or refractive index gradients, the sensitivity of 
reference-beam interferometry is limited by the signal to noise ratio  
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assuming that the photon noise from the reference beam is the dominant source of noise. Note 
that this is only a theoretical bound for the LDV noise. In the above equation, Ws0 is the mean 
light power per unit solid angle scattered from the whole illuminated spot in the direction of the 
detector (i.e. average over the speckles), r0 is the radius of the spot size, and λ is the wavelength 
of the laser. Therefore the LDV’s sensitivity depends on the laser power, the type of rough 
surface, and the focused spot size. We will raise four questions around these issues and give 
some brief discussions. 

 

1. Could LDV be used for any surfaces at a large distance? 

As we have found, almost all natural objects vibrate with normal sound waves. However, surface 
reflectance is a big issue. The relatively poor performance with a rough surface at a large 
distance is basically due to the fact that only a small fraction of the scattered light (approximately 
one speckle) can be used because of the coherence consideration. This problem can be 
minimized by the use of a highly convergent illuminating beam, thus reducing the spot size (the 
radius r0) and consequently increasing the speckle size. This is probably the most practical 
approach, which has been used by our Polytec super-long lens OFV-505 LDV sensor head, and 
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has been proved to be much more effective (up to 300 ft without retro-tape, and up to 1000 ft 
with retro-tape) than all the other types of the LDVs of the same company. We feel that 
increasing the focus over a longer range (>1000 ft) still has potential, and truly intelligent 
targeting and focusing is an important research issue, since at large distances it is very hard for 
human eyes to see and focus the laser spot.  We shall note here that this reduces the depth of 
focus and increases the sensitivity to the sideways displacement of the surface.  

A more practical choice is to use surface treatment with the stat-of-the-art LDV sensors. A useful 
surface finish for obtaining good signal in LDV is retro-reflecting surface. With this the light is 
returned to the sources independently of the orientation of the surface, thus maximizing Ws0. 
Retro-reflecting surface finishes are available as adhesive tapes and paints. The thickness of the 
finish is not a big issue for the low frequency acoustic signals. However, in many military 
applications, particularly in overseas airbase protection, applying retro-tape is not practical. 
Spaying painting might be a better approach. Shooting small retro-vibration bullets is another 
possible choice. With some smart way to augment surface finishes, LDV remote non-contact 
listening will be a more attractive alternative to microphone bugs since LDV obviates the need 
for a remote power supply and wired communication channels.  

 

2. What will be the technical and economic challenges in changing the laser wavelength, e.g. 
from red to IR, or ultraviolet? 

The change of the red laser to invisible such as IR and ultraviolet has several advantages. First, it 
satisfies the clandestine requirement.  Second, some surfaces (e.g. windows) may have better 
reflection to wavelengths other than red. Third, changing the wavelength may increase the 
sensitivity (Eq. (1), Eq. (11)).  From Eq. (1), decreasing the wavelength will increase the Doppler 
frequency shift, thus increasing the resolution of the LDV. However, from Eq. (11) this could 
decrease the signal to noise ratio thus decreasing the sensitivity. Therefore, further research 
needs to be performed to find the best wavelength for LDV voice detection applications. 

The current laser Doppler vibrometry technology is shaped amongst other technologies, such as 
the advanced development of laser itself along with necessary optical components and FM-
demodulation components that are available on the market. The laser used for Polytec OFV-505 
is a helium neon (HeNe) laser. This gas laser produces a visible red laser beam (l = 0.6328 µm), 
and it is an extremely low-noise light source and therefore suited for vibration measurements. To 
the best of our knowledge, Doppler vibrometry has not yet been commercially available for IR or 
ultraviolet. If there is a driving force, we could find companies and/or institutions in IR or 
ultraviolet laser communities who will be interested in developing specialized Doppler 
vibrometry devices. From a technical standpoint of view, it is definitely a feasible idea. 
However, it might be very costly if the infrastructure is not in favor of developing. 

 

3. How will the increase of laser power enhance the range capability of the LDV? 

Current laser power is limited by eye-safety issues as dictated by laser industry standards. The 
Polytec OFV-505 uses a laser beam with power less than 1mW.  One may increase the laser 
power to the upper limits of the standard up to 2 mW. This increase (from 1 or 1.5 mW to 2 mW) 
will only slightly increase the signal return strength and the sensitivity of the LDV (Eq. (11)), but 
these increases will not be significant unless breaking of the eye-safe limit is allowed. The 
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wavelength and capability of longer-range focus (above 1000 ft) will bring more benefit in the 
LDV sensitivity than only increasing the power. As we have shown, the tiny vibration magnitude 
by voice waves is detected by the LDV in terms of Doppler shifts. The resolution of the Doppler 
shifts that can be measured is directly related to the wavelength of the laser light. With an 
unreasonable Doppler shift resolution, no matter how many times of the laser power may be 
increased (thus increasing the SNR) it will not increase the performance, given that LDV can 
receive a reasonable reflected light. In contrast, by carefully focusing the laser light at long 
range, one could realize a drastic increase of performance quality.  

 

4. Is it possible to have a handheld LDV for acoustic detection, which means the sensor or 
targets might be moving?  Will speckle pattern be a major problem here? 

Handheld LDV with high quality has been around on the market for a while (such as Polytec 
PDV 100). However, the portable versions of the LDVs can only be used for short range sensing 
and detection, typically within a few meters and with retro-tape treatment. For long-range 
applications, even if we can make the more advanced model such as Polytec OFV-505 as 
portable as PDV-100 it will still be problematic since any movement or jittering of LDV will be 
enhanced in a long distance, resulting in a faster movement of the laser beam. This will 
drastically increase the negative effect of speckle noise. In addition, the enhanced movement will 
cause apparent and unwanted velocity mixing with measurements by the LDV.  The speckle 
problem is inherent with laser Doppler vibrometry technology, since the wavelength of the laser 
light is so short that almost any practical surface under test can be considered as rough. The 
roughness of a surface will cause constructive and destructive interference of reflected light rays, 
which forms randomly distributed light-dark patterns: speckle patterns [1]. The light sensor – a 
photo diode –  cannot always get a continuous light intensity.  So, whether working in short or 
long ranges, one has to deal with the speckle problem. For moving sensor and long range targets, 
the speckle problem will become more serious since long range measurement needs a increasing 
laser focus to reduce the spot size, but as a side effect also increases the sensitivity to the 
sideways displacement of the surface. 

 

In conclusion, the LDV performance is dependent upon all the fundamental properties of the 
laser: monochromaticity, coherence, directionality, and high power density. Because of its ready 
availability and excellent optical characteristics, notably monochromaticity and coherence, the 
helium-neon laser has dominated much of the prior work in the field. However, a LDV system 
based on 633 nm helium-neon laser is somewhat limited with regard to maximum power (single 
mode stabilized < 3 mW, which controls sensitivity – Eq. (11)). Therefore, other more powerful 
laser systems are actively explored [1]. One choice is the argon ion laser, which can not only 
deliver higher power (up to 20 W), but is also inherently more sensitive because its shorter 
wavelength (488 nm or 514 nm), according to Eq. (1).  The continuous wave (CW) Nd-YAG 
laser is also available as a solid-state option for interferometry in infrared or visible.  
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7.2. Multimodal integration and intelligent targeting and focusing 
When using an LDV for voice detection, we need to find and localize the target that vibrates with 
voice waves and reflects the laser beam of the LDV, and then aim the laser beam of the LDV at 
the target.  Multimodal integration of IR/EO imaging and LDV listening provides a solution for 
this problem. Ultimately this will lead to a fully automated system for clandestine listening for 
perimeter protection. Even when the LDV is used by a soldier in the field, automatic target 
detection, localization and LDV focusing will helps the solider to find and aim the LDV at the 
target for voice detection.  

We have found that it is extremely difficult for a human operator to aim the laser beam of the 
LDV at a distant target and keep it focused. In the current experiments, the human operator turns 
the LDV sensor head in order to aim the laser beam at the target. The laser beam needs to be re-
focused when the distance of the target is changed. Otherwise the laser spot is out of focus. As a 
consequence, it is very hard for the human to see the laser spot at a distance above 10 meters, 
and it is impossible to detect vibration when the laser spot is out of focus. In a typical distance 
experiment, the target (or an “assistant” target), preferably with a retro-reflective tape pasted, 
needs to be held by hand and to be moved gradually from the sensor head to the designated 
distance, while trying to keep the laser spot on it. About several meters, the LDV needs to be 
refocused to make the laser spot clearly visible for human eyes. Even with the automatic focus 
function of the Polytec OFV-505 sensor head, it usually takes more than 10 seconds for the LDV 
to search the full range of the focus parameter (0 – 3000) in order to bring the laser spot into 
focus. Therefore automatic targeting and intelligent refocusing is one of the important technical 
challenges that deserve attention for long-range LDV listening. Future research issues include 
the following three aspects. 

• Target detection and localization via IR/EO imaging. Techniques for detecting humans and 
their surroundings need to be developed for finding vibration targets for LDV listening. We 
have set up an IR/EO imaging system with an IR camera and a PTZ camera for this purpose. 

• Registration between the IR/EO imaging system and the LDV system. Two types of sensors 
need to be precisely aligned so that we can point the laser beam of the LDV to the target that 
the IR/EO imaging system has detected.  

• Automated targeting and focusing. Our current LDV system has real-time signal return 
strength measurements as well as the real-time vibration signals. The search range of the 
focus function can also be controlled by program. Algorithms could be developed to perform 
real-time laser focus updating by using the feedback of the LDV signal return strengths and 
the actual vibration signals. We could also make micro movement of the LDV sensor head to 
track the target to get the best signal return while performing automatic re-focusing. 

 

8. Conclusions 
The LDV is a non-contact, remote, and high-resolution (both in spatially and temporally) voice 
detector. In this one-year project, we have mainly focused on the experimental study on LDV-
based voice detection. We also briefly discuss how we can use IR/EO imaging for target 
selection and localization for LDV listening. We have set up a system with three types of sensors 
(IR cameras, PTZ color cameras and LDVs) for performing integration of multimedia sensors in 
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human signature detection. The basic idea is to provide an advanced virtualized-reality based 
interface of the site (e.g., air base) to give the operator the best cognitive understanding of the 
environment, the sensors and the events.  

We mainly discuss various aspects of LDVs for voice detection – basic principles and problems, 
signal enhancement algorithms, and experimental designs. We focus on the study of the human 
centered technology for LDV sensor information enhancement and clandestine listening. We 
have designed a graphic human computer interface for signal analysis, signal filtering, and signal 
synthesis. The graphic interface helps a user to understand the relation between the signals and 
noises in term of magnitudes and frequencies, and by signal synthesis (i.e. speech synthesis from 
the filtered laser Doppler vibrometry signals) the user can adaptively pick up the useful signals.  

We investigate the possibility and quality of voice captured by LDV devices that point to the 
objects nearby the voice sources. We have found that the vibration of the objects caused by the 
voice energy reflects the voice itself. After the enhancement with Gaussian bandpass filtering 
and adaptive volume scaling, the LDV voice signals are mostly intelligible from targets without 
retro-reflective tapes at short distances (<300 ft, or 100m). By using retro-reflective tapes, the 
distance could be as far as 1000 ft (300 meters). 

However, without retro-reflective tape treatment, the LDV voice signals are very noisy from 
targets at medium and large distances. Therefore, further LDV sensor improvement is required. 
With current state-of-the-art sensor technology, we realize that more advanced signal 
enhancement techniques need to be developed than the simple band-pass filtering and adaptive 
volume scaling. For example, model-based voice signal enhancement could be a solution in that 
background noises might be captured and analyzed, and models could be developed from the 
resulting data. 

We also want to emphasize that automatic targeting and intelligent refocusing is one of the 
important technical issues that deserve attention for long-range LDV listening, since it is 
extremely difficult to aim a laser beam at a distant target and keep it focused. We believe that 
LDV voice detection techniques combined with the IR/EO video processing techniques can 
provide a more useful and powerful surveillance technology for both military and civilian 
applications.   
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